报告标题: Online Machine Learning for Empirical Risk Minimization in Dynamic Environments
报告人: 薛伟(安徽工业大学副教授)
报告摘要: The amount of available data is growing exponentially in recent years, and as a result, big data is becoming ubiquitous. Online machine learning is a key to deriving insight from this deluge of data. In this talk, we will first give a brief review of online learning along with some preliminaries. And then, we will introduce several online learning methods from the perspective of learning model and learning algorithm respectively. Comparison results on benchmark datasets demonstrate that our approaches are feasible and effective.
报告人简介: 薛伟,博士,国防科技大学博士后,现为安徽工业大学计算机学院副教授、硕士生导师、软件工程系主任,研究方向为机器学习,主要研究在线学习、强化学习、对抗学习等方法,以及相关方法在数据挖掘、计算机视觉等任务中的应用。以第一作者或通讯作者身份先后在IEEE Transactions on Neural Networks and Learning Systems, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Tsinghua Science and Technology, International Journal of Machine Learning and Cybernetics, Intelligent Data Analysis, 《中国科学》等国内外学术期刊,以及IJCNN, PRICAI, ICONIP等国际学术会议上发表论文20余篇。主持完成了国家自然科学基金青年项目,中国博士后科学基金特别资助项目,中央军委装备发展部项目管理中心自动目标识别重点实验室基金项目,安徽高校自然科学研究重点项目等。在研安徽省自然科学基金面上项目1项。
报告时间: 2023年4月23日14:00-16:00
报告地点: 第6教研楼北210