旧版入口
学院动态
学术交流
2023年10月25日陈韵梅教授学术报告
上传时间:2023-10-24 作者: 浏览次数:284

报告题目Generalizable and interpretable MRI reconstruction with high data heterogeneity

报告人陈韵梅

报告摘要We introduce a generalizable MRI reconstruction method with diverse dataset to tackle the task specific and extremely data demanding problems in deep learning-based methods.  Our approach proposes a variational model, in which the learnable regularization function is parameterized by two sets of parameters: a task-invariant set for common feature encoding and a task-specific part to account for the variations in the heterogeneous data. Then, we generate a neural network, whose architecture follows exactly a convergent learned optimization algorithm for solving the nonconvex and nonsmooth variational model. The network is trained by a bilevel optimization algorithm to prevent overfitting and improve generalizability. A series of experimental results on heterogeneous MRI data sets indicate that the proposed method generalizes well to the reconstruction problems whose undersampling patterns and trajectories are not present during training.

报告人简介:

   陈韵梅教授1985年毕业于复旦大学获得理学博士学位,1986-1989年期间在理论物理国际中心攻读博士后,1989-1992年期间在SISSA担任访问教授,随后一直工作于美国佛罗里达大学现任佛罗里达大学杰出教授最近五年来,陈韵梅教授主要致力于数学、图像处理和机器学习等交叉学科的研究研究课题不仅包括图像分析中数学模型的建立与数值方法的发展,而且对其潜在的数学理论进行了深入地探索。曾获中国国家自然科学三等奖、教育部科技进步一等奖、获国际发明专利9项,主持国家级项目30项,Inventiones Mathematicae, SIAM Journal on Imaging Science, Pattern Recognition, IEEE Transactions on Biomedical Engineering等杂志上发表学术论文200余篇。陈韵梅教授被公认为偏微分方程与图像处理领域内的知名科学家,在国内外具有崇高的学术地位。


报告时间:20231025(周三上午9:30-10:30

报告地点 六教南528

学院联系人:王伟娜

 

 欢迎感兴趣的老师和同学参加!


Copyright © 2014 3200威尼斯vip(中国)有限公司 版权所有